skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swenson, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This data is an on-going collection of soil temperature, soil moisture, soil CO2 concentration, and soil O2 concentration starting in October 2021. We have installed sensors and probes at different soil depths across landscapes in five of the former Critical Zone Observatory locations (see the document named "sensor location"). Soil temperature and moisture are measured using Acclima SDI-12 sensors. Soil CO2 concentrations are measured using Eosense CO2 probes (switching to Vaisala GMP343 and GMP251 in 2023). Soil O2 concentrations are measured using Apogee SO-110-L-10 soil oxygen sensors. This dataset, along with our measurements of soil geomicrobiology and biogeochemistry (available in EarthChem), will help us understand the role of microbes as drivers of Critical Zone biogeochemistry and soil formation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Although the Salton Sea was once a thriving destination for humans and wildlife, it has now degraded to the point of ecosystem collapse. Increases in local dust emissions have introduced aeolian (wind-blown) microorganisms that travel, along with contaminants and minerals, into the atmosphere, detrimentally impacting inhabitants of the region. Proliferation of certain microbial groups in regions of the Sea may have a disproportionate impact on local ecological systems. Yet, little is known about how the biogeochemical processes of this drying lakebed influence microbial community composition and dispersal. To elucidate how these microorganisms contribute, and adapt, to the Sea's volatile conditions, we synthesize research on three niche-specific microbiomes — exposed lakebed (playa), the Sea, and aeolian — and highlight modern molecular techniques, such as metagenomics, coupled with physical science methodologies, including transport modeling, to predict how the drying lakebed will affect microbial processes. We argue that an explicit consideration of microbial groups within this system is needed to provide vital information about the distribution and functional roles of ecologically pertinent microbial groups. Such knowledge could help inform regulatory measures aimed at restoring the health of the Sea's human and ecological systems. 
    more » « less